PCDIY!業界新聞
SAS攜手玉山、北榮落實AI營運化,建議產業關注「維運化(Ops)」、「複合式AI」技術,進化AI價值
(本資訊由廠商提供,不代表PCDIY!立場) 2022-03-10 17:40:38
全球人工智慧與分析領域領導者SAS,今表示近兩年環境變動讓企業更仰賴數據分析,使SAS全球營收持續成長並蟬聯全球預測及進階分析市場首位,2021年台灣市場營收更取得雙位數成長,奪下亞太區卓越績效國家冠軍 ! SAS台灣聚焦協助企業落實AI進入營運端,今發表已助玉山金控建置維運化(Ops)流程,讓上百個AI模型得以數分鐘內完成監控與回饋,實現AI規模化應用;亦與臺北榮總合作即時資料處理、AI自動化與邊緣運算,AI維運化三階段佈局,助其將AI專案完成時間從1年縮減到1週內,並提供可解釋的AI讓診療輔助更安全!
SAS 台灣總經理陳愷新指出: 「環境的不確定性,讓組織做判斷的難度大增,因此更仰賴數據來提升決策信心。然而當數據分析與AI技術被廣用,又帶來另一波規模化的挑戰。這也是為何領先組織會著眼佈局『維運化』(Ops)流程。因為只有讓AI從開發到部署,能在標準流程下被自動監控更新,才能大規模發揮營運價值,解決真實商業問題。」
回顧SAS台灣去年主要業務成長動能,雲端產品及軟體授權帶來40%的營收成長,獲利領域包含風險管理(IFRS17)與詐欺偵測、AI運算管理平台以及智慧醫療方案等。展望下一波動能,SAS表示將聚焦疫後趨勢與法遵科技,包含數位詐欺、國際保險資本標準(ICS)2.0與氣候風險管理等解決方案,並力推增強的「自動化機器學習(AutoML)」功能,與「維運化(Ops)解決方案」,以確保AI更容易被導入及部署,讓組織的AI投資效益更快體現。
然而,隨著內部AI應用場景愈來愈多元,連接此平台上包含行銷、風控、服務等AI模型累計數量超過上百個!這些模型上線後迎來營運端不斷變化的真實資料,要維持一定的預測準確度不易,如早前上線的信用卡盜刷偵測模型,受疫情影響刷卡習慣從實體商店移轉到電商通路,這些改變導致既有盜刷偵測失準,突顯模型監控的重要性。然而,監控流程牽涉到使用的業務單位、資訊處及智能金融處等部門各異的管理機制;且一個情景的模型監控,可能就要耗費多個人天,如果模型失準後還需要再投入3-6個月重新訓練,不難想像當面對上百個模型,管理難度與時間耗費多麼驚人。
因此玉山攜手SAS,共同打造一個自動化、透明化的模型維運流程(ModelOps),藉以將模型管理作到規模化。這流程包含把所有AI(商用或開源)模型版本、分析專案納管在一個中央儲存庫,設定權限讓應用單位機密不外洩;再來把整個模型生命週期的管理流程標準化,提高協作效率也便於監控;最後打造統一且透明的回饋機制,讓各應用單位權責人員皆可主動監控異況,同時參與簽核把關模型品質。最重要的是透過此平台把整個管理與稽核軌跡留存下來,為邁向法遵規範立穩根基。
玉山金控科技長張智星表示: 「與SAS的合作讓我們成功將監控模型作業,從3天縮短到數分鐘。但我們更看重的意義,是當應用單位也共同參與監管AI、認同AI的精準度,才會更願意在日常營運使用它,讓AI展現真正價值。」
日前再度完成階段二: 「AI自動化與邊緣運算」。即導入自動化機器學習AutoML技術,讓建模過程從資料前處理、模型建置與部署,到模型解釋全都自動化,協助院內分析人員減少超過9成的建模時間!省下更多時間拿來跟醫師對焦病因,且有餘力支援愈來愈多元的分析命題,如加入血紅素偵測助醫師預判腎性貧血等。同時AutoML還可1秒產出解釋報告,為醫生排序病患心衰竭的複雜成因,幫助醫師臨床診斷更便捷、更具實證支持! 實際參與專案的腎臟科醫生也表示,相比過往使用開源軟體完成專案需耗費1年,現在透過AutoML只要1週!
為了讓上述應用服務拓展到更多科別與院區,後續雙方也聯手打造邊緣運算,讓AI模型運作於如洗腎機等終端點裝置上,即可啟動即時運算,無須擴增相對昂貴的伺服器數量,預計可省下99%的伺服器硬體費用,讓平行拓展AI模型的成本大幅降低,規模化得以實現!
完成了優化AI開發與規模化AI應用後,第三階段北榮要做到「管控與拓展」: 透過架構在雲端環境上的模型維運化(ModelOps) 流程,不斷監控模型效能。臺北榮總資訊室郭振宗主任說明: 「醫院做模型維運化的終極目的,是要管控AI模型的效能,以確保輔助診療的安全性。未來我們還要朝向邁入食藥署『軟體即醫療器材(SaMD)』的目標,推展此一典範模型給更多醫院,以造福更多病患。」
譬如一個零售商想要了解如何最佳化定價,過往可使用機器學習技術,運算歷史交易資料、庫存水位、客戶屬性及競品訂價,來定出產品價格區間。但如果想進一步深掘問題層次,像是了解在定價以及促銷策略上該如何取得平衡?最終該最佳化營業額、利潤、市場份額、還是三者間做出情境模擬?面對這樣複雜的商業問題,就需要運用到橫跨機器學習、需求預測、統計及最佳化等AI技術。此外,複合式AI還可以從小數據中,以集合式的技術找出洞察,可說是AI價值的再進化。
陳愷新也提醒,能養成具備跨AI學科團隊的組織仍是少數,因此企業須尋求可支援複合式AI技術的單一平台,搭配為自身重要商業問題做出定義與排序,制定出「階梯式戰略」才容易取得成功。
SAS 台灣總經理陳愷新指出: 「環境的不確定性,讓組織做判斷的難度大增,因此更仰賴數據來提升決策信心。然而當數據分析與AI技術被廣用,又帶來另一波規模化的挑戰。這也是為何領先組織會著眼佈局『維運化』(Ops)流程。因為只有讓AI從開發到部署,能在標準流程下被自動監控更新,才能大規模發揮營運價值,解決真實商業問題。」
回顧SAS台灣去年主要業務成長動能,雲端產品及軟體授權帶來40%的營收成長,獲利領域包含風險管理(IFRS17)與詐欺偵測、AI運算管理平台以及智慧醫療方案等。展望下一波動能,SAS表示將聚焦疫後趨勢與法遵科技,包含數位詐欺、國際保險資本標準(ICS)2.0與氣候風險管理等解決方案,並力推增強的「自動化機器學習(AutoML)」功能,與「維運化(Ops)解決方案」,以確保AI更容易被導入及部署,讓組織的AI投資效益更快體現。
玉山金控打造ModelOps流程,實現AI應用規模化
國內金融界的AI領頭羊玉山金控,早前為了讓AI服務能在各事業單位實際發揮商業價值,由智能金融處自建機器學習即服務平台(Machine Learning as a Service,MLaaS),讓各業務單位系統可透過此平台即時呼叫請求AI微服務,可說是打造供應內部單位AI的服務平台。然而,隨著內部AI應用場景愈來愈多元,連接此平台上包含行銷、風控、服務等AI模型累計數量超過上百個!這些模型上線後迎來營運端不斷變化的真實資料,要維持一定的預測準確度不易,如早前上線的信用卡盜刷偵測模型,受疫情影響刷卡習慣從實體商店移轉到電商通路,這些改變導致既有盜刷偵測失準,突顯模型監控的重要性。然而,監控流程牽涉到使用的業務單位、資訊處及智能金融處等部門各異的管理機制;且一個情景的模型監控,可能就要耗費多個人天,如果模型失準後還需要再投入3-6個月重新訓練,不難想像當面對上百個模型,管理難度與時間耗費多麼驚人。
因此玉山攜手SAS,共同打造一個自動化、透明化的模型維運流程(ModelOps),藉以將模型管理作到規模化。這流程包含把所有AI(商用或開源)模型版本、分析專案納管在一個中央儲存庫,設定權限讓應用單位機密不外洩;再來把整個模型生命週期的管理流程標準化,提高協作效率也便於監控;最後打造統一且透明的回饋機制,讓各應用單位權責人員皆可主動監控異況,同時參與簽核把關模型品質。最重要的是透過此平台把整個管理與稽核軌跡留存下來,為邁向法遵規範立穩根基。
玉山金控科技長張智星表示: 「與SAS的合作讓我們成功將監控模型作業,從3天縮短到數分鐘。但我們更看重的意義,是當應用單位也共同參與監管AI、認同AI的精準度,才會更願意在日常營運使用它,讓AI展現真正價值。」
臺北榮總完成AI專案從一年縮短到1週!下一步以維運化確保AI安全性
臺北榮總與SAS共同合作展開三階段AI臨床應用技術藍圖。去年初雙方首先完成階段一:「資料為王」,將北榮大數據平台的資料,與血液透析(洗腎)機等聯網機器分秒吐出的串流資料做串接,毫秒級分析不同結構的巨量資料,為腎友做到90%準確率的個人心衰竭風險預判。後續還串接肺部影像資料讓病因分析更全面。日前再度完成階段二: 「AI自動化與邊緣運算」。即導入自動化機器學習AutoML技術,讓建模過程從資料前處理、模型建置與部署,到模型解釋全都自動化,協助院內分析人員減少超過9成的建模時間!省下更多時間拿來跟醫師對焦病因,且有餘力支援愈來愈多元的分析命題,如加入血紅素偵測助醫師預判腎性貧血等。同時AutoML還可1秒產出解釋報告,為醫生排序病患心衰竭的複雜成因,幫助醫師臨床診斷更便捷、更具實證支持! 實際參與專案的腎臟科醫生也表示,相比過往使用開源軟體完成專案需耗費1年,現在透過AutoML只要1週!
為了讓上述應用服務拓展到更多科別與院區,後續雙方也聯手打造邊緣運算,讓AI模型運作於如洗腎機等終端點裝置上,即可啟動即時運算,無須擴增相對昂貴的伺服器數量,預計可省下99%的伺服器硬體費用,讓平行拓展AI模型的成本大幅降低,規模化得以實現!
完成了優化AI開發與規模化AI應用後,第三階段北榮要做到「管控與拓展」: 透過架構在雲端環境上的模型維運化(ModelOps) 流程,不斷監控模型效能。臺北榮總資訊室郭振宗主任說明: 「醫院做模型維運化的終極目的,是要管控AI模型的效能,以確保輔助診療的安全性。未來我們還要朝向邁入食藥署『軟體即醫療器材(SaMD)』的目標,推展此一典範模型給更多醫院,以造福更多病患。」
「複合式AI」(Composite AI),才可解決真正複雜商業問題
SAS總經理陳愷新建議企業除了維運化(Ops),下一波必須掌握「複合式AI」(Composite AI)技術-即在同一個運行框架下,結合不同AI技術,來為複雜商業問題提出最佳解。譬如一個零售商想要了解如何最佳化定價,過往可使用機器學習技術,運算歷史交易資料、庫存水位、客戶屬性及競品訂價,來定出產品價格區間。但如果想進一步深掘問題層次,像是了解在定價以及促銷策略上該如何取得平衡?最終該最佳化營業額、利潤、市場份額、還是三者間做出情境模擬?面對這樣複雜的商業問題,就需要運用到橫跨機器學習、需求預測、統計及最佳化等AI技術。此外,複合式AI還可以從小數據中,以集合式的技術找出洞察,可說是AI價值的再進化。
陳愷新也提醒,能養成具備跨AI學科團隊的組織仍是少數,因此企業須尋求可支援複合式AI技術的單一平台,搭配為自身重要商業問題做出定義與排序,制定出「階梯式戰略」才容易取得成功。
- 發表您的看法
請勿張貼任何涉及冒名、人身攻擊、情緒謾罵、或內容涉及非法的言論。
請勿張貼任何帶有商業或宣傳、廣告用途的垃圾內容及連結。
請勿侵犯個人隱私權,將他人資料公開張貼在留言版內。
請勿重複留言(包括跨版重複留言)或發表與各文章主題無關的文章。
請勿張貼涉及未經證實或明顯傷害個人名譽或企業形象聲譽的文章。
您在留言版發表的內容需自負言論之法律責任,所有言論不代表PCDIY!雜誌立場,違反上述規定之留言,PCDIY!雜誌有權逕行刪除您的留言。
最近新增
- 《永恆輪迴》煉獄新賽季全面登場!VLS滑翔系統、秘密研究室與全新造型同步亮相
- Lam Research 科林研發率先推出半導體業界首款用於晶圓製造設備維護優化的協作機器人
- 激殺雙12, 火鳥最強檔 - 獨家好禮大放送
- NETGEAR RS600 WiFi 7路由器正式登台 提供極速連網體驗!
- 終結過熱!全漢FSP全新散熱器系列火熱上市!
- 統一資訊推出「AI 服務機器人」平台 攜手樺漢科技系統整合 推廣全球智慧城市、智慧零 售等多元解決方案
- MSI微星科技再獲2024台灣25大國際品牌殊榮 品牌價值達2.12億美元
- DEVCORE 蟬聯 IT Matters Awards 最佳 IT 雇主獎! 實施週休三日、系統性培育資安人才雙管齊下
- D-Link友訊科技攜手利害關係人 共創淨正效益 榮獲TCSA 三大獎 再度入選台灣百大永續典範
- 宏正113年11月合併營收達新台幣4.44億元
- 技嘉在CES 2025展出全方位運算力,讓AI人工智慧在新世代加速發展不受限
- Speak 宣布獲 7,800 萬美元 C 輪融資、估值達10億美元 為更多人帶來語言學習的新契機
最多人點閱
- Microsoft Azure Certified for IoT 快速打造智慧物聯網
- 美光與希捷宣布成立策略聯盟 兩大產業龍頭攜手 結合美光NAND型快閃記憶體與希捷的儲存技術
- SP廣穎電通將於德國2015 Embedded World展示全方位工控系列產品
- 電腦每天開!電費多驚人?世界地球日 用APP隨時關機
- 英特爾舉辦亞洲區創新高峰會 促進台灣與全亞洲產業體系的創新發展
- IEM於台北國際電玩展熱血開打,購買Intel Core i5/i7處理器系列+SSD 750即得限量好禮
- 深根台灣成就萬物相聯 2015 ARM®新竹辦公室擴大營運暨亞洲第一座CPU設計中心開幕
- AMD發表全球首款GPU硬體虛擬化產品線
- AMD推出全球首款業界領先的32GB記憶體伺服器GPU 瞄準高效能運算
- AMD推出全新Catalyst 15.7驅動程式 讓AMD APU及GPU充分展現Windows®10直覺化體驗
- PLEXTOR感恩節大回饋,M6V卡禮來雙重送!
- 希捷科技:2016年六大科技趨勢