PCDIY!業界新聞
透過 FLARE 進行聯合學習:NVIDIA 將協作式人工智慧帶入醫療等領域,全新開源軟體提供一個用於聯合學習的通用運算基礎,加速醫療、製造及金融服務等產業的人工智慧發展
(本資訊由廠商提供,不代表PCDIY!立場) 2021-11-30 16:58:53
NVIDIA (輝達) 推出開源型態的 NVIDIA FLARE 軟體開發套件 (SDK),協助分散各地的用戶合作開發更多通用的人工智慧 (AI) 模型,使研究人員能較過去更容易地使用聯合學習。
能夠保護隱私的聯合學習技術,特別適用於資料稀缺、機密或缺乏多樣性的情況,同時也適用於大型資料集,這些資料集可能會因為組織收集資料的方法,或病患、客戶的人口統計資料而出現偏差。
NVIDIA FLARE (Federated Learning Application Runtime Environment) 是 NVIDIA Clara Train 聯合學習軟體的基礎引擎,已應用於醫學影像、遺傳分析、腫瘤學及 COVID-19 研究的 AI 應用。研究人員與資料科學家可以透過此 SDK,將其現有的機器學習和深度學習工作流程調整為分散式架構 (paradigm)。
研究人員與平台開發人員透過採用開源型態的 NVIDIA FLARE,將能擁有更多工具來自訂其聯合學習解決方案,讓各行各業的先進 AI 變得更強大。
借助此 SDK,研究人員便能為特定領域的應用程式挑選各種聯合學習架構,量身打造自己的方法。平台開發者可以透過 NVIDIA FLARE 為客戶提供打造多方協作應用程式所需的分散式基礎設施。
NVIDIA 利用主從式架構,將從每個參與者學習到的模型參數發送到一個公用伺服器上,並匯總成一個全域模型 (global model)。NVIDIA 帶領進行的聯合學習專案,幫助分割胰臟癌腫瘤、對乳房攝影中的乳房密度進行分類,以告知罹患乳癌的風險,以及預測 COVID 患者的氧氣需求。
另外兩個使用 NVIDIA FLARE 的聯合學習合作項目也運用主從式架構,包含 NVIDIA 與羅氏 (Roche) Digital Pathology 的研究人員合作,利用整個片子的影像進行分類,成功地進行了內部模擬;NVIDIA 與位於荷蘭的 Erasmus Medical Center 合作開發一個 AI 應用程式,用於與精神分裂症病例有關的遺傳變異辨識。
不過並非每個聯合學習應用項目都適用於主從式架構。NVIDIA FLARE 透過支援其他架構,讓更多的應用項目能夠使用聯合學習。潛在的應用案例包含協助能源公司分析地震和井眼 (wellbore) 資料、協助製造商最佳化工廠營運,以及幫助金融公司改善詐欺偵測模型。
哈佛醫學院放射學系副教授暨 MONAI 社群聯合學習工作小組負責人 Jayashree Kalapathy 博士表示:「採用開源型態的 NVIDIA FLARE 加速聯合學習研究,這對醫療領域尤其重要,在此領域中必須取得多個機構的資料集,而擔心洩漏病患隱私一事讓我們無法分享資料。我們很高興能夠對 NVIDIA FLARE 有所貢獻,且繼續與 MONAI 整合以推動醫學影像研究的發展。」
NVIDIA FLARE 亦支援以下單位的聯合學習解決方案:
● 美國放射學會 (American College of Radiology;ACR):該醫學會與 NVIDIA 合作進行聯合學習研究,將 AI 用於乳癌和 COVID-19 應用的放射學影像。該學會計畫在 ACR AI-LAB 中分散 NVIDIA FLARE,ACR AI-LAB 是一個可供該學會數萬名成員使用的軟體平台。
● Flywheel:該公司的 Flywheel Exchange 平台使用戶能夠取得及共享生物醫學研究的資料和演算法、管理用於分析和訓練的聯合學習專案,還能選擇他們喜歡的聯合學習解決方案,包括 NVIDIA FLARE。
● 台灣智慧雲端服務股份有限公司 (台智雲):該公司提供由 GPU 支援的 MLOps 平台,讓客戶能夠運行基於 NVIDIA FLARE 的聯合學習。現有五個醫學影像專案在該公司的私有叢集上運行,各專案皆有多家醫院參與。
● Rhino Health:該公司是 NVIDIA Inception 加速器計畫的合作夥伴及成員,早已將 NVIDIA FLARE 整合至其聯合學習解決方案中,該解決方案幫助麻省總醫院 (Massachusetts General Hospital) 的研究人員開發一個能夠更準確地診斷腦動脈瘤的 AI 模型,並協助美國國家癌症研究所早期偵測研究網路 (National Cancer Institute’s Early Detection Research Network) 的專家,開發與驗證能夠辨識胰臟癌早期跡象的醫學影像 AI 模型。
Rhino Health 的創辦人 Ittai Dayan 博士表示:「為了有效合作並提高效率,醫療領域研究人員需要一個通用且沒有侵犯病患隱私風險的 AI 開發平台。Rhino Health 使用 NVIDIA FLARE 打造的『聯合學習即平台 (Federated Learning as a Platform)』解決方案,將成為加速推動醫療 AI 影響的有用工具。」
能夠保護隱私的聯合學習技術,特別適用於資料稀缺、機密或缺乏多樣性的情況,同時也適用於大型資料集,這些資料集可能會因為組織收集資料的方法,或病患、客戶的人口統計資料而出現偏差。
NVIDIA FLARE (Federated Learning Application Runtime Environment) 是 NVIDIA Clara Train 聯合學習軟體的基礎引擎,已應用於醫學影像、遺傳分析、腫瘤學及 COVID-19 研究的 AI 應用。研究人員與資料科學家可以透過此 SDK,將其現有的機器學習和深度學習工作流程調整為分散式架構 (paradigm)。
研究人員與平台開發人員透過採用開源型態的 NVIDIA FLARE,將能擁有更多工具來自訂其聯合學習解決方案,讓各行各業的先進 AI 變得更強大。
借助此 SDK,研究人員便能為特定領域的應用程式挑選各種聯合學習架構,量身打造自己的方法。平台開發者可以透過 NVIDIA FLARE 為客戶提供打造多方協作應用程式所需的分散式基礎設施。
適用於多個產業的彈性聯合學習工作流程
參與聯合學習的單位共同訓練或評估 AI 模型,無需匯集或交換各組的專有資料集。NVIDIA FLARE 提供多種分散式架構來實現這一點,包括點對點、循環及主從式 (server-client) 等。NVIDIA 利用主從式架構,將從每個參與者學習到的模型參數發送到一個公用伺服器上,並匯總成一個全域模型 (global model)。NVIDIA 帶領進行的聯合學習專案,幫助分割胰臟癌腫瘤、對乳房攝影中的乳房密度進行分類,以告知罹患乳癌的風險,以及預測 COVID 患者的氧氣需求。
另外兩個使用 NVIDIA FLARE 的聯合學習合作項目也運用主從式架構,包含 NVIDIA 與羅氏 (Roche) Digital Pathology 的研究人員合作,利用整個片子的影像進行分類,成功地進行了內部模擬;NVIDIA 與位於荷蘭的 Erasmus Medical Center 合作開發一個 AI 應用程式,用於與精神分裂症病例有關的遺傳變異辨識。
不過並非每個聯合學習應用項目都適用於主從式架構。NVIDIA FLARE 透過支援其他架構,讓更多的應用項目能夠使用聯合學習。潛在的應用案例包含協助能源公司分析地震和井眼 (wellbore) 資料、協助製造商最佳化工廠營運,以及幫助金融公司改善詐欺偵測模型。
NVIDIA FLARE 與醫療 AI 平台進行整合
NVIDIA FLARE 可與現有的 AI 計畫進行整合,包括用於醫學影像的開源 MONAI 框架。哈佛醫學院放射學系副教授暨 MONAI 社群聯合學習工作小組負責人 Jayashree Kalapathy 博士表示:「採用開源型態的 NVIDIA FLARE 加速聯合學習研究,這對醫療領域尤其重要,在此領域中必須取得多個機構的資料集,而擔心洩漏病患隱私一事讓我們無法分享資料。我們很高興能夠對 NVIDIA FLARE 有所貢獻,且繼續與 MONAI 整合以推動醫學影像研究的發展。」
NVIDIA FLARE 亦支援以下單位的聯合學習解決方案:
● 美國放射學會 (American College of Radiology;ACR):該醫學會與 NVIDIA 合作進行聯合學習研究,將 AI 用於乳癌和 COVID-19 應用的放射學影像。該學會計畫在 ACR AI-LAB 中分散 NVIDIA FLARE,ACR AI-LAB 是一個可供該學會數萬名成員使用的軟體平台。
● Flywheel:該公司的 Flywheel Exchange 平台使用戶能夠取得及共享生物醫學研究的資料和演算法、管理用於分析和訓練的聯合學習專案,還能選擇他們喜歡的聯合學習解決方案,包括 NVIDIA FLARE。
● 台灣智慧雲端服務股份有限公司 (台智雲):該公司提供由 GPU 支援的 MLOps 平台,讓客戶能夠運行基於 NVIDIA FLARE 的聯合學習。現有五個醫學影像專案在該公司的私有叢集上運行,各專案皆有多家醫院參與。
● Rhino Health:該公司是 NVIDIA Inception 加速器計畫的合作夥伴及成員,早已將 NVIDIA FLARE 整合至其聯合學習解決方案中,該解決方案幫助麻省總醫院 (Massachusetts General Hospital) 的研究人員開發一個能夠更準確地診斷腦動脈瘤的 AI 模型,並協助美國國家癌症研究所早期偵測研究網路 (National Cancer Institute’s Early Detection Research Network) 的專家,開發與驗證能夠辨識胰臟癌早期跡象的醫學影像 AI 模型。
Rhino Health 的創辦人 Ittai Dayan 博士表示:「為了有效合作並提高效率,醫療領域研究人員需要一個通用且沒有侵犯病患隱私風險的 AI 開發平台。Rhino Health 使用 NVIDIA FLARE 打造的『聯合學習即平台 (Federated Learning as a Platform)』解決方案,將成為加速推動醫療 AI 影響的有用工具。」
- 發表您的看法
請勿張貼任何涉及冒名、人身攻擊、情緒謾罵、或內容涉及非法的言論。
請勿張貼任何帶有商業或宣傳、廣告用途的垃圾內容及連結。
請勿侵犯個人隱私權,將他人資料公開張貼在留言版內。
請勿重複留言(包括跨版重複留言)或發表與各文章主題無關的文章。
請勿張貼涉及未經證實或明顯傷害個人名譽或企業形象聲譽的文章。
您在留言版發表的內容需自負言論之法律責任,所有言論不代表PCDIY!雜誌立場,違反上述規定之留言,PCDIY!雜誌有權逕行刪除您的留言。
最近新增
- 網石於 The Game Awards 2025公開 《七大罪:Origin》全新預告片
- 威剛揮出永續全壘打 全面加速ESG行動 厚植永續治理 接連榮獲「台灣企業永續獎」、最佳職場肯定
- 科技海嘯來襲!Check Point Software 發佈 2026 年資安預測 技術融合與 AI Agents 的崛起重新定義全球安全韌性
- NetApp 揭露台灣資料管理策略 驅動台灣躍升區域 AI 樞紐 從統一資料儲存邁向統一資料模型 NetApp 強化資料管理方法 加速企業 AI 資料管道 助攻台灣 AI 島願景
- HPE 推出首款 AMD「Helios」AI機架級解決方案 整合Broadcom開放式網路架構,加速AI部署
- TrendForce: 傳統旺季與新品帶動,3Q25全球智慧手機產量季增9%
- XPG 發表全新 ARMAX DDR5 系列電競記憶體 隱形戰機造型設計 助玩家馳騁無數遊戲戰役
- 混合專家架構驅動最智慧的前沿 AI 模型, 搭載 NVIDIA Blackwell NVL72 運行速度提升達十倍
- 十銓科技發表 TEAMGROUP PD40 迷你外接式固態硬碟 輕巧之姿融合高速效能 隨行儲存引領行動新潮
- 華碩智慧指揮中樞亮相 2025 醫療科技展 大秀人機協作新紀元
- 點亮文青桌面美學!ASUS Jelly75撞色鍵盤玩出新氣氛
- AMD與HPE擴大合作,攜手推進開放式機架級AI基礎設施
最多人點閱
- SP廣穎電通將於德國2015 Embedded World展示全方位工控系列產品
- IEM於台北國際電玩展熱血開打,購買Intel Core i5/i7處理器系列+SSD 750即得限量好禮
- AMD發表全球首款GPU硬體虛擬化產品線
- 希捷科技:2016年六大科技趨勢
- InWin 805 NVIDIA EDITION機殼爆紅,迎廣GeForce GTX特仕版機箱正式開賣!
- 2024開學季筆電選購指南: 10大熱銷筆電推薦榜
- Windows 10 搭載 Office 版本聲明稿 Office Mobile 、 Office 2016 與 Office 365 版本差異說明
- Lenovo聯想持續拓展伺服器市場,瞄準中型企業推出ThinkServer系列伺服器
- 你的人生「升級」了沒?倒數十天!Windows 10開闊你的無限視野
- 全新Intel Core X系列處理器- Intel Core i9 極致版處理器 重裝上陣
- 微軟攜手研華、凌華與新漢 以Azure IoT Suite串聯物聯網大未來
- PLEXTOR展現軟實力,一舉推出三大獨家軟體
