PCDIY!業界新聞
透過 FLARE 進行聯合學習:NVIDIA 將協作式人工智慧帶入醫療等領域,全新開源軟體提供一個用於聯合學習的通用運算基礎,加速醫療、製造及金融服務等產業的人工智慧發展
(本資訊由廠商提供,不代表PCDIY!立場) 2021-11-30 16:58:53
NVIDIA (輝達) 推出開源型態的 NVIDIA FLARE 軟體開發套件 (SDK),協助分散各地的用戶合作開發更多通用的人工智慧 (AI) 模型,使研究人員能較過去更容易地使用聯合學習。
能夠保護隱私的聯合學習技術,特別適用於資料稀缺、機密或缺乏多樣性的情況,同時也適用於大型資料集,這些資料集可能會因為組織收集資料的方法,或病患、客戶的人口統計資料而出現偏差。
NVIDIA FLARE (Federated Learning Application Runtime Environment) 是 NVIDIA Clara Train 聯合學習軟體的基礎引擎,已應用於醫學影像、遺傳分析、腫瘤學及 COVID-19 研究的 AI 應用。研究人員與資料科學家可以透過此 SDK,將其現有的機器學習和深度學習工作流程調整為分散式架構 (paradigm)。
研究人員與平台開發人員透過採用開源型態的 NVIDIA FLARE,將能擁有更多工具來自訂其聯合學習解決方案,讓各行各業的先進 AI 變得更強大。
借助此 SDK,研究人員便能為特定領域的應用程式挑選各種聯合學習架構,量身打造自己的方法。平台開發者可以透過 NVIDIA FLARE 為客戶提供打造多方協作應用程式所需的分散式基礎設施。
NVIDIA 利用主從式架構,將從每個參與者學習到的模型參數發送到一個公用伺服器上,並匯總成一個全域模型 (global model)。NVIDIA 帶領進行的聯合學習專案,幫助分割胰臟癌腫瘤、對乳房攝影中的乳房密度進行分類,以告知罹患乳癌的風險,以及預測 COVID 患者的氧氣需求。
另外兩個使用 NVIDIA FLARE 的聯合學習合作項目也運用主從式架構,包含 NVIDIA 與羅氏 (Roche) Digital Pathology 的研究人員合作,利用整個片子的影像進行分類,成功地進行了內部模擬;NVIDIA 與位於荷蘭的 Erasmus Medical Center 合作開發一個 AI 應用程式,用於與精神分裂症病例有關的遺傳變異辨識。
不過並非每個聯合學習應用項目都適用於主從式架構。NVIDIA FLARE 透過支援其他架構,讓更多的應用項目能夠使用聯合學習。潛在的應用案例包含協助能源公司分析地震和井眼 (wellbore) 資料、協助製造商最佳化工廠營運,以及幫助金融公司改善詐欺偵測模型。
哈佛醫學院放射學系副教授暨 MONAI 社群聯合學習工作小組負責人 Jayashree Kalapathy 博士表示:「採用開源型態的 NVIDIA FLARE 加速聯合學習研究,這對醫療領域尤其重要,在此領域中必須取得多個機構的資料集,而擔心洩漏病患隱私一事讓我們無法分享資料。我們很高興能夠對 NVIDIA FLARE 有所貢獻,且繼續與 MONAI 整合以推動醫學影像研究的發展。」
NVIDIA FLARE 亦支援以下單位的聯合學習解決方案:
● 美國放射學會 (American College of Radiology;ACR):該醫學會與 NVIDIA 合作進行聯合學習研究,將 AI 用於乳癌和 COVID-19 應用的放射學影像。該學會計畫在 ACR AI-LAB 中分散 NVIDIA FLARE,ACR AI-LAB 是一個可供該學會數萬名成員使用的軟體平台。
● Flywheel:該公司的 Flywheel Exchange 平台使用戶能夠取得及共享生物醫學研究的資料和演算法、管理用於分析和訓練的聯合學習專案,還能選擇他們喜歡的聯合學習解決方案,包括 NVIDIA FLARE。
● 台灣智慧雲端服務股份有限公司 (台智雲):該公司提供由 GPU 支援的 MLOps 平台,讓客戶能夠運行基於 NVIDIA FLARE 的聯合學習。現有五個醫學影像專案在該公司的私有叢集上運行,各專案皆有多家醫院參與。
● Rhino Health:該公司是 NVIDIA Inception 加速器計畫的合作夥伴及成員,早已將 NVIDIA FLARE 整合至其聯合學習解決方案中,該解決方案幫助麻省總醫院 (Massachusetts General Hospital) 的研究人員開發一個能夠更準確地診斷腦動脈瘤的 AI 模型,並協助美國國家癌症研究所早期偵測研究網路 (National Cancer Institute’s Early Detection Research Network) 的專家,開發與驗證能夠辨識胰臟癌早期跡象的醫學影像 AI 模型。
Rhino Health 的創辦人 Ittai Dayan 博士表示:「為了有效合作並提高效率,醫療領域研究人員需要一個通用且沒有侵犯病患隱私風險的 AI 開發平台。Rhino Health 使用 NVIDIA FLARE 打造的『聯合學習即平台 (Federated Learning as a Platform)』解決方案,將成為加速推動醫療 AI 影響的有用工具。」
能夠保護隱私的聯合學習技術,特別適用於資料稀缺、機密或缺乏多樣性的情況,同時也適用於大型資料集,這些資料集可能會因為組織收集資料的方法,或病患、客戶的人口統計資料而出現偏差。
NVIDIA FLARE (Federated Learning Application Runtime Environment) 是 NVIDIA Clara Train 聯合學習軟體的基礎引擎,已應用於醫學影像、遺傳分析、腫瘤學及 COVID-19 研究的 AI 應用。研究人員與資料科學家可以透過此 SDK,將其現有的機器學習和深度學習工作流程調整為分散式架構 (paradigm)。
研究人員與平台開發人員透過採用開源型態的 NVIDIA FLARE,將能擁有更多工具來自訂其聯合學習解決方案,讓各行各業的先進 AI 變得更強大。
借助此 SDK,研究人員便能為特定領域的應用程式挑選各種聯合學習架構,量身打造自己的方法。平台開發者可以透過 NVIDIA FLARE 為客戶提供打造多方協作應用程式所需的分散式基礎設施。
適用於多個產業的彈性聯合學習工作流程
參與聯合學習的單位共同訓練或評估 AI 模型,無需匯集或交換各組的專有資料集。NVIDIA FLARE 提供多種分散式架構來實現這一點,包括點對點、循環及主從式 (server-client) 等。NVIDIA 利用主從式架構,將從每個參與者學習到的模型參數發送到一個公用伺服器上,並匯總成一個全域模型 (global model)。NVIDIA 帶領進行的聯合學習專案,幫助分割胰臟癌腫瘤、對乳房攝影中的乳房密度進行分類,以告知罹患乳癌的風險,以及預測 COVID 患者的氧氣需求。
另外兩個使用 NVIDIA FLARE 的聯合學習合作項目也運用主從式架構,包含 NVIDIA 與羅氏 (Roche) Digital Pathology 的研究人員合作,利用整個片子的影像進行分類,成功地進行了內部模擬;NVIDIA 與位於荷蘭的 Erasmus Medical Center 合作開發一個 AI 應用程式,用於與精神分裂症病例有關的遺傳變異辨識。
不過並非每個聯合學習應用項目都適用於主從式架構。NVIDIA FLARE 透過支援其他架構,讓更多的應用項目能夠使用聯合學習。潛在的應用案例包含協助能源公司分析地震和井眼 (wellbore) 資料、協助製造商最佳化工廠營運,以及幫助金融公司改善詐欺偵測模型。
NVIDIA FLARE 與醫療 AI 平台進行整合
NVIDIA FLARE 可與現有的 AI 計畫進行整合,包括用於醫學影像的開源 MONAI 框架。哈佛醫學院放射學系副教授暨 MONAI 社群聯合學習工作小組負責人 Jayashree Kalapathy 博士表示:「採用開源型態的 NVIDIA FLARE 加速聯合學習研究,這對醫療領域尤其重要,在此領域中必須取得多個機構的資料集,而擔心洩漏病患隱私一事讓我們無法分享資料。我們很高興能夠對 NVIDIA FLARE 有所貢獻,且繼續與 MONAI 整合以推動醫學影像研究的發展。」
NVIDIA FLARE 亦支援以下單位的聯合學習解決方案:
● 美國放射學會 (American College of Radiology;ACR):該醫學會與 NVIDIA 合作進行聯合學習研究,將 AI 用於乳癌和 COVID-19 應用的放射學影像。該學會計畫在 ACR AI-LAB 中分散 NVIDIA FLARE,ACR AI-LAB 是一個可供該學會數萬名成員使用的軟體平台。
● Flywheel:該公司的 Flywheel Exchange 平台使用戶能夠取得及共享生物醫學研究的資料和演算法、管理用於分析和訓練的聯合學習專案,還能選擇他們喜歡的聯合學習解決方案,包括 NVIDIA FLARE。
● 台灣智慧雲端服務股份有限公司 (台智雲):該公司提供由 GPU 支援的 MLOps 平台,讓客戶能夠運行基於 NVIDIA FLARE 的聯合學習。現有五個醫學影像專案在該公司的私有叢集上運行,各專案皆有多家醫院參與。
● Rhino Health:該公司是 NVIDIA Inception 加速器計畫的合作夥伴及成員,早已將 NVIDIA FLARE 整合至其聯合學習解決方案中,該解決方案幫助麻省總醫院 (Massachusetts General Hospital) 的研究人員開發一個能夠更準確地診斷腦動脈瘤的 AI 模型,並協助美國國家癌症研究所早期偵測研究網路 (National Cancer Institute’s Early Detection Research Network) 的專家,開發與驗證能夠辨識胰臟癌早期跡象的醫學影像 AI 模型。
Rhino Health 的創辦人 Ittai Dayan 博士表示:「為了有效合作並提高效率,醫療領域研究人員需要一個通用且沒有侵犯病患隱私風險的 AI 開發平台。Rhino Health 使用 NVIDIA FLARE 打造的『聯合學習即平台 (Federated Learning as a Platform)』解決方案,將成為加速推動醫療 AI 影響的有用工具。」
- 發表您的看法
請勿張貼任何涉及冒名、人身攻擊、情緒謾罵、或內容涉及非法的言論。
請勿張貼任何帶有商業或宣傳、廣告用途的垃圾內容及連結。
請勿侵犯個人隱私權,將他人資料公開張貼在留言版內。
請勿重複留言(包括跨版重複留言)或發表與各文章主題無關的文章。
請勿張貼涉及未經證實或明顯傷害個人名譽或企業形象聲譽的文章。
您在留言版發表的內容需自負言論之法律責任,所有言論不代表PCDIY!雜誌立場,違反上述規定之留言,PCDIY!雜誌有權逕行刪除您的留言。
最近新增
- TrendForce:Inference AI需求導致Nearline HDD嚴重缺貨,2026年QLC SSD出貨有望趁勢爆發
- 威剛 XPG VALOR AIR PRO 領銜登場! 打造美型高效無痛安裝的次世代機殼
- 把投影機價格打下來!Warpple 品牌 HD 投影機預購免兩千元 搭載 200° 靈動雲台、先進短焦技術;攜手 momo推 「OVO強強特惠組」買高規投影機送頂級立式護眼燈
- SAMA 先馬開學祭, 買大境界就送你 360 水冷散熱器
- GIGABYTE 與 V-COLOR 合作 推出創新內建 OLED 超頻記憶體
- 技嘉「BEYOND EDGE」發表會揭示將加速推進 AI 創新佈局
- AMD擴展工作站效能、推進AI PC發展,並為開發者提供全新工具
- TrendForce: 庫存調整結束,2Q25全球智慧手機產量季增4%
- 開學季最殺優惠!全漢FSP機殼最低 5 折起 CST351、CST352 限時入手價開跑,打造你的新學期專屬主機!
- 領航國際!華碩再獲《TIME》全球最佳企業殊榮
- Jamf 推出專為 Apple 及行動裝置設計的企業管理解決方案 全面提升 IT、資安與使用者體驗 過去 12 個月內近 140 萬台裝置受到網路釣魚攻擊,裝置保護刻不容緩!
- 《我獨自升級: ARISE》歡慶上市500日 推出特別慶祝活動
最多人點閱
- Microsoft Azure Certified for IoT 快速打造智慧物聯網
- SP廣穎電通將於德國2015 Embedded World展示全方位工控系列產品
- 英特爾舉辦亞洲區創新高峰會 促進台灣與全亞洲產業體系的創新發展
- IEM於台北國際電玩展熱血開打,購買Intel Core i5/i7處理器系列+SSD 750即得限量好禮
- 深根台灣成就萬物相聯 2015 ARM®新竹辦公室擴大營運暨亞洲第一座CPU設計中心開幕
- AMD發表全球首款GPU硬體虛擬化產品線
- PLEXTOR感恩節大回饋,M6V卡禮來雙重送!
- 希捷科技:2016年六大科技趨勢
- 台灣微軟與Lamigo聯手 應援總冠軍封王賽「Win for 10」!
- InWin 805 NVIDIA EDITION機殼爆紅,迎廣GeForce GTX特仕版機箱正式開賣!
- AMD獲選2015年道瓊永續性指數 連續14年榮獲此殊榮
- 微軟推出Office 2016 引領MOCO新世代 Office 2016 以全新特色打造工作新境界 隨時隨地 無所不在
